

SunRingTM **Heliostat** *Minimizing Slope Error with Smart Design and Assembly*

SolarPACES 2023 October 11th, 2023

Kyle Kattke kyle.kattke@solardynllc.com

11/10/2023

Feedbo 22002222 July 2022

		Key Attributes					
1111111		Structure	Carousel space frame	Foundation	6 (3) x screw piles		
		Reflective area	27 (28.2) m ²	Power	PV plus battery		
	Elevation Rotation Axis	Mirror array	8.46 (8.8) m x 3.21 m 2.6 (2.7) aspect ratio	Control	Wireless		
		Stow height	1.98 m	Elevation drive	Linear actuator		
i Az	zimuth Rotation Axis	Optical shape	Canted with flat facets (2-D focused)	Azimuth drive	Roller pinion and geared track		
SunRing Pro	ototype: Rear View	Black: Original Drop-C Project Blue: Changes in current design					
Development Timeline	HelioCon Project (18 mo • Redesigned mirror arra	nths) y		Performance			
Drop-C Project (4.4 years) • Wind tunnel testing • 3 x full-scale prototypes • Wireless Mesh Network	SunRing cost model co	vering 30-year lifecycle		 Total installed cost < \$100/m₂ at commercial scale 			
testing	SBIR Project: Phase 1 (12 months) SBIR Project • Improved azimuth drive design Budget Period • Proof-of-concept lifecycle testing • Refined azi	Phase 2 (24 months) 1 Budget Period 2 uth drive thru • Commercial intent SunRing		(10-20% additional cost savings)			

prototype

verification

Oct 2024

• NREL optical performance

Aug 2025

lifecycle testing

May 2023 Aug 2023

- Optical error: 1.65 mrad slope error (calm conditions)
- Wind criteria: 35 mph maximum tracking / 94 mph survival in stow

Octt 20117

Optical Error Introduction

- Total optical error comprised of Slope Error and Tracking Error
 - Slope error is the focus in this presentation
- Slope error is deviation between actual mirror surface's normal vector and ideal optical shape's normal vector
- SunRing ideal optical shape = 2-D focused paraboloid
 - Focal length dependent on distance to tower
- Slope error is not constant, dependent on:
 - Heliostat orientation (i.e. time of year and location in solar field)
 - Errors due to gravity load
 - Wind speed and direction
 - Errors due to wind load
 - Temperature of the heliostat
 - Errors due to differential thermal expansion

Focus of this presentation: minimize slope error due to gravity loads

¹Röger, Marc. SolarPACES Guideline for Heliostat Performance Testing, Draft Version 0.991.

11/10/2023

Impact of Orientation on Gravity Induced Slope Error

- Elevation angle has a large influence on slope error ٠
- Use annual energy delivered to receiver as weighting factor
 - Approx 1.1M m² field with MS receiver in Arizona, USA

FEA Predicted RMS Slope Error from 2nd Generation Prototype

Elevation Angle [°]	30°	45°	60°	75°	Annual Avg.
Slope Error [mrad]	2.1	1.6	1.2	0.9	1.38

61

53

51

Elevation Angle [°]	0-10	10-20	20-30	30-40	40-50	50-60	60-70	70-80	80-90
% of Annual Energy Delivered to Receiver	1%	4%	7%	11%	18%	23%	23%	11%	1%

Potential to tune heliostat for field location and/or time of year

> **Energy Weighted Elevation Angle at** - Specific Field Locations - Specific Month

Smart Assembly to Minimize Slope Error

- Gravity loads cause rotation of each facet's overall normal vector, i.e. "canting or facet rotation error"
 - Primary cause is torque tube bending and twisting
 - Magnitude of rotation is f(elevation angle)
- Facet rotation error calculated from Photogrammetry and FEA point clouds

Elevation Angle [°]		0	30	60	75	90	Annual Weighted Average	
Rotation Error [mrad]	Predicted	1.29	0.84	0.33	0.44	0.75	0.47	
	Measured	1.31	0.86	0.68	0.77	1.07	0.74	
	Smart Assembly	0.83	0.38	0.2	0.29	0.59	0.26	-

Slope Error due to Facet Rotation from 2nd Generation Prototype

- Assembly jig can tune out facet rotation error
 - Choose 1 elevation angle for tuning (use energy delivered to receiver as basis)
 - Tune at 60° minimizes annual slope error _____
 - Remove most error at 60°, other orientations maintain change in error compared to the 60° case

Mirror Array Workstation

- Mirror array workstation enables precision alignment of mirror facets
 - Being developed and prototyped in Q4 2023 through HelioCon project
- 2 step assembly process
 - 1. Place blank mirror facets onto workstation
 - Mirrors are supported at each point where they will be attached to the heliostat's mirror support structure
 - $\rightarrow~$ Supported with adjustable height tooling
 - Mirror supports adjust their height to realize goal mirror array optical shape
 - Canting angle offset added to compensate for gravity induced facet rotation error
 - 2. Attach mirror support structure
 - Locks in optical shape set by workstation
- Application: easily adjust heliostat's optical shape accounting for
 - Different focal lengths
 - Different canting angle offsets based on field location

SolarDynamics **uc**

Concentrating on a new energy future

- An annual average slope error metric is useful for design trade-off studies and for annual performance modeling
 - Energy weighted elevation angle factors incorporate the heliostat orientation's impact on annual slope error
- Smart assembly of the mirror array enables minimizing impact of gravity loads on facet rotation error
 - Annual slope error reductions of 0.5 mrad possible on SunRing
 - Enabled by precision control over mirror shape during assembly of mirror array
 - Opens possibility for less stiff structures that are tuned for their respective highest energy ranking elevation angle

Acknowledgment

This project was made possible with funding from the US Department of Energy's Solar Energy Technology Office under HelioCon award SUB-2023-10314

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

SOLAR ENERGY TECHNOLOGIES OFFICE